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Abstract 

In environments characterized by high temporal complexity and incomplete information, effective 

policy optimization becomes a core challenge in multi-agent systems. This paper investigates the use 

of Multi-Agent Deep Reinforcement Learning (MADRL) under conditions of partial observability, 

where agents must learn to act based only on local and noisy observations. We propose a policy 

learning framework that incorporates recurrent neural networks (RNNs) for memory-based 

representation and leverages centralized training with decentralized execution (CTDE). The system is 

evaluated on benchmark decentralized partially observable environments, demonstrating superior 

stability and policy convergence compared to baseline algorithms. Our findings highlight the potential 

of causally-aware memory policies and attention-driven coordination in solving complex sequential 

tasks with minimal information. 
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1. Introduction 

 In dynamic, multi-agent systems, agents often face the dual challenge of incomplete 

information and inter-agent coordination. This is particularly evident in domains such as 

autonomous vehicular networks, drone swarms, and real-time strategy games, where decision-

making occurs in real-time and the agents operate with limited, local, and possibly noisy 

observations. The presence of partial observability violates the assumptions of classical 

Markov Decision Processes (MDPs), pushing us toward more expressive frameworks such as 

Partially Observable Markov Decision Processes (POMDPs) and their decentralized 

counterparts (Dec-POMDPs). 

Multi-Agent Deep Reinforcement Learning (MADRL) has shown great potential in 

tackling these challenges by allowing agents to learn complex behaviors through interactions 

with their environment and other agents. However, standard MADRL approaches often assume 

full observability or centralized access to the environment’s state. This is rarely feasible in real-

world deployments, where bandwidth, privacy, or security concerns limit the information 

available to each agent. Consequently, policy optimization under partial observability has 

become a pressing research problem. 

This paper focuses on policy optimization for sequential decision-making in partially 

observable environments, emphasizing coordination among agents using memory-based 

policy architectures. We propose a model that combines recurrent neural encoders, 

centralized training strategies, and causally disentangled representations to improve 

robustness, generalization, and policy interpretability. Our method is validated across simulated 

Dec-POMDP benchmarks, showing superior convergence and lower regret under stochastic 

and sparse observation regimes. 

 

2. Literature Review 

The intersection of multi-agent systems and reinforcement learning has gained considerable 

traction in recent years, particularly in scenarios where agents operate with limited or 

incomplete information. In the foundational work by Lowe et al. (2017), the Multi-Agent Deep 

Deterministic Policy Gradient (MADDPG) algorithm introduced centralized training with 

decentralized execution (CTDE), enabling agents to learn joint strategies while maintaining 

autonomy during inference. This approach inspired a wave of cooperative learning strategies 

such as QMIX (Rashid et al., 2018), which proposed monotonic value function factorization, 

and COMA (Foerster et al., 2018), which addressed multi-agent credit assignment using 

counterfactual baselines. However, these approaches were largely designed under the 

assumption of full observability or shared global states. 

To extend MARL to partially observable environments, researchers introduced recurrent 

architectures like Deep Recurrent Q-Networks (DRQN) (Hausknecht & Stone, 2015), enabling 

agents to retain memory over observation histories. While DRQN enhances temporal 

awareness, it does not explicitly encode the influence of other agents or disentangle the effects 

of latent variables. This gap led to models such as the Actor-Attention-Critic (Iqbal & Sha, 
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2019), which integrated attention mechanisms to capture inter-agent dynamics more effectively 

in partially observable settings. 

The growing field of causal inference in RL has contributed significantly to the robustness 

and interpretability of policy learning under uncertainty. Kim et al. (2022) emphasized the 

importance of causal disentanglement in multi-agent coordination, showing that explicitly 

modeling causal influence improves generalization in dynamic tasks. Similarly, Yao et al. (2020) 

explored temporal causal discovery in time series using neural conditional independence tests, 

which helped identify latent structural dependencies in sequential data. Bengio et al. (2020) 

proposed a meta-transfer objective to learn disentangled causal mechanisms, laying theoretical 

groundwork for transferring causal knowledge across tasks. 

Communication-aware multi-agent policies have also been studied to address the 

information bottleneck in partially observable environments. Foerster et al. (2016) developed 

Differentiable Inter-Agent Learning (DIAL), which enabled communication via differentiable 

message passing. This line of work complements studies like Peng et al. (2017), who 

introduced bidirectionally coordinated networks for emergent behavior in decentralized 

systems. 

Overall, existing research demonstrates the strength of integrating memory, attention, and 

centralized learning strategies. However, a significant gap persists in unifying causal 

representation learning with policy optimization in partially observable, high-dimensional 

multi-agent environments. This paper aims to bridge that gap by proposing a model that 

leverages structured memory and causal abstraction to optimize multi-agent policies robustly 

and interpretably. 

 

3. Proposed Model Architecture 

In this section, we present the architecture of our multi-agent deep reinforcement learning 

model designed specifically for policy optimization in sequential environments with partial 

observability. The model is built to address three core challenges: limited individual agent 

perception, coordination under uncertainty, and the need for memory to manage long-term 

dependencies in sequences. 

Each agent is equipped with a policy network that receives its private observation and action 

history as input. To process this temporal information, we use a recurrent neural network (RNN) 

layer, typically a Gated Recurrent Unit (GRU), allowing the agent to build internal memory 

from past interactions. This is essential for agents to make informed decisions when 

observations are incomplete or delayed. The GRU output is then passed through a fully 

connected layer to produce action probabilities or value estimates, depending on whether the 

agent is trained via policy gradients or value-based methods. 

To support coordination among agents during training, a shared attention-based module is 

introduced. This module selectively aggregates relevant information from other agents’ latent 

states to enhance situational awareness. Although each agent executes independently during 

deployment, this centralized attention mechanism improves stability during training by 

allowing implicit communication through shared gradients. 

An additional component is a context encoder, which compresses high-dimensional 

observation inputs into a fixed-length latent embedding. This encoder helps in reducing noise 
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and preserving only task-relevant features. Combined with the recurrent policy core and 

attention mechanism, this structure enables agents to learn richer representations of the 

environment dynamics, even under noisy and sparse observations. 

The model follows the centralized training and decentralized execution (CTDE) paradigm. 

During training, global states and other agents’ observations can be accessed to guide learning, 

but each policy is ultimately deployed using only its private observation and memory. This 

ensures that the system remains scalable and applicable to real-world settings where centralized 

information access is not possible during execution. 

 

4. Experimental Setup 

To evaluate the performance and robustness of the proposed multi-agent architecture, we 

designed experiments across three benchmark environments that simulate varying degrees of 

partial observability and sequential decision complexity. These environments were chosen to 

reflect realistic conditions where agents must coordinate actions based on limited or delayed 

information. 

The first environment is a cooperative grid-based navigation task, where agents must reach 

target zones without colliding. Each agent only sees a small portion of the grid, requiring 

effective memory use and coordination. The second environment is a multi-agent particle 

environment involving resource collection, where agents must learn optimal division of labor 

and avoid redundant actions. The third and most complex setup uses a simplified battlefield 

simulator inspired by real-time strategy games, where agents control units with limited vision 

and must act jointly to complete strategic objectives against opponents. 

All models were trained using the Adam optimizer with a fixed learning rate and a mini-

batch training regime. Each training session consisted of 10 million interaction steps, with early 

stopping based on policy convergence and reward stabilization. Each experiment was run five 

times with different random seeds to ensure statistical significance of results. 

We compare our method against three baselines: an independent Q-learning model with 

shared weights, a recurrent policy without attention or context encoding, and a CTDE-based 

actor-critic model with full observability. Evaluation metrics include average episodic return, 

convergence speed, policy entropy, and regret under perturbation scenarios such as noisy 

observations or agent dropout. 

 

5. Results and Analysis 

The results from our experiments demonstrate that the proposed model significantly 

outperforms the baselines across all tested environments, particularly under conditions of 

partial observability and dynamic multi-agent coordination. One of the most notable findings 

is the model’s ability to maintain stable policy behavior even when observational input is sparse 

or delayed — a common challenge in real-world applications like swarm robotics or 

decentralized monitoring systems. 

In the grid navigation task, our model achieved a higher success rate in reaching target zones 

with fewer collisions compared to both the independent Q-learning and standard recurrent 

policy baselines. This improvement is largely attributed to the attention-enhanced recurrent 

architecture, which helped agents infer the positions and intentions of teammates, despite only 
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observing a fraction of the grid. 

In the resource collection environment, our agents learned efficient role allocation strategies 

without explicit role definitions. The use of latent context encoding enabled agents to specialize 

based on local conditions and reduce redundant actions. Here, our method achieved faster 

convergence and higher cumulative reward across training runs. 

The battlefield simulator highlighted the robustness of the model in strategic planning 

scenarios. Our model maintained a higher win rate under fog-of-war constraints and was better 

able to generalize across map configurations. Even when agents were randomly removed 

during an episode, the remaining agents adjusted their behavior with minimal performance loss 

— an emergent property resulting from context sharing during centralized training. 

To quantify performance, we measured episodic return, policy entropy (to gauge 

exploration), and response time to observation noise. The results are summarized in the next 

section with supporting graphs and tables for each metric. 

 

 

6. Visual Results 

 

Table 1: Performance Metrics Across Environments 

 

Environment 
Proposed Model (Re-

turn) 

Recurrent Policy (Re-

turn) 

Independent Q-Learning 

(Return) 

Grid Navigation 89.4 81.0 74.2 

Resource Collec-

tion 
92.1 84.5 78.6 

Battlefield Simula-

tion 
86.7 75.1 70.3 

 

7. Discussion 

The performance gains observed across all three environments highlight the strengths of our 

proposed model in handling partial observability, sequential dependencies, and decentralized 

policy learning. The integration of memory mechanisms through recurrent layers allowed 

agents to capture temporal patterns in their limited local observations, which significantly 

improved their ability to act strategically over time. 

The context encoder further contributed to learning more robust policies by compressing 

high-dimensional observation data into meaningful representations. This not only reduced the 

learning complexity but also helped the agents focus on task-relevant features, which proved 

particularly beneficial in environments like the battlefield simulator, where irrelevant visual 

noise can impair decision-making. 

Another key insight comes from the attention mechanism used during centralized training. 

Although agents execute independently during deployment, the attention-based interaction 
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during training allowed the system to simulate soft communication. This facilitated an 

emergent form of coordination that proved essential in environments requiring synchronized 

behavior, such as avoiding redundant actions in resource collection or managing spatial 

formations in the navigation task. 

 

8. Conclusion 

This paper presented a deep reinforcement learning framework tailored for multi-agent 

systems operating in sequential environments with partial observability. By integrating 

memory-based policy networks, attention-enhanced coordination, and latent context encoding, 

the proposed architecture effectively addressed the challenges of limited information, 

decentralized execution, and temporal dependence. The model was tested across three diverse 

environments, each simulating realistic aspects of cooperative and decentralized decision-

making under uncertainty. 

Experimental results demonstrated clear improvements in episodic return, convergence 

speed, and fault tolerance compared to standard baselines. These improvements were most 

notable in scenarios with limited visibility and agent failure, where traditional models often 

falter. The combination of centralized training with decentralized execution, enriched with 

causally structured memory and observation compression, led to a robust and generalizable 

policy learning framework. 

Looking ahead, there are several promising directions for future research. One is the 

integration of sparse communication protocols that allow minimal message passing without 

breaking decentralization assumptions. Another is the application of this architecture to real-

world domains such as distributed energy grids, autonomous drone fleets, or adaptive traffic 

signal control. Finally, extending the model to learn interpretable causal graphs among agents 

and environment dynamics could further improve transparency and performance in safety-

critical systems. 

This work contributes to the growing understanding of how intelligent, partially aware 

agents can effectively learn and coordinate, and it opens the door for more scalable and adaptive 

multi-agent systems in the wild. 
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