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Abstract 

Power management is critical for enhancing the performance and longevity of mobile devices 

running the Android operating system. This paper examines the evolution of power restrictions in 

Android OS, focusing on recent advancements in energy-efficient application management. We 

analyze key mechanisms such as Doze mode, App Standby, and background execution limits, and 

their impact on extending battery life while maintaining a balance between user experience and 

system performance. The paper also address the challenges developers encounter in optimizing 

applications within these constraints, offering insights into best practices and future pathways for 

enhancing energy efficiency in Android-powered devices. 
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1. Introduction  

The widespread adoption of smartphones has led to an increasing demand for devices that 

are both powerful and energy-efficient. Battery life is a key consideration for users, as longer 

battery life enhances the usability and convenience of mobile devices. The Android operating 

system, which is one of the most widely used mobile platforms, has implemented various 

power management strategies to address these user needs.  

Early versions of Android featured basic power-saving measures, such as limiting 

background processes and adjusting screen brightness, but these methods were insufficient as 

applications grew more complex and power-hungry. In response, Google introduced more 

sophisticated power management features in subsequent Android versions to enhance battery 

performance while minimizing disruptions to user experience [1, 13,14]. 

This paper aims to provide a comprehensive overview of the evolution of power-saving 

mechanisms in Android, including Doze mode, App Standby, and background execution limits 

[6]. We examine the effectiveness of these features in reducing energy consumption and explore 

their impact on both application performance and battery longevity. Additionally, the paper 

presents guidelines for developers to optimize their applications for energy efficiency while 

maintaining the desired level of performance [13, 14]. 

2. Literature Review 

2.1. Overview of Power Management in Android OS 

Power management in Android OS has evolved significantly over the years, with each new 

version introducing features to optimize energy consumption. Google's documentation 

highlights mechanisms such as Doze mode, App Standby, and background execution limits 

introduced in recent Android versions [1]. However, a thorough evaluation of their impact on 

application behavior and user experience remains a subject of ongoing research. Studies have 

shown the benefits and challenges of these power management mechanisms [2, 3]. Evolution 

of Android power management is shown in Fig.1. 

 

Figure 1. Android power management evolution 

2.2. Comparative Studies on Power Optimization Techniques 
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Optimizing Android power consumption involves analyzing various strategies employed by 

Android OS [4]. User behavior patterns, such as device usage and idle times, play a role in 

determining power management techniques [5]. Marimuthu et al. highlighted that while Doze 

mode and App Standby effectively extend battery life during idle states, they may delay 

background tasks, affecting real-time applications. This paper proposes a balanced approach to 

maintain app functionality while still benefiting from power-saving features, focusing on 

dynamic app behavior adaptation [6][7]. 

Table-1. Literature survey summary 

Author(s) Year Focus Area Key Findings 

Marimuthu et 

al. 

2021 Doze Mode and 

App Standby 

impacts on real-

time applications 

Doze Mode and App Standby 

extend battery life but may delay 

background tasks. 

Hurbungs et al. 2016 Trade-offs 

between resource 

efficiency and 

performance in 

Android 8.0 

Background limits improve 

battery life but hinder adaptation 

for real-time demands. 

Gupta et al. 2024 Battery 

optimization in 

Android 

applications 

Proposed solutions to reduce 

battery consumption for various 

app categories. 

Souza et al. 2024 Energy 

consumption 

optimization 

techniques 

Recommendations for reducing 

energy consumption in mobile 

applications. 

Ruiz 

Nepomuceno et 

al. 

2024 Systematic review 

on adaptive 

mobile learning 

systems 

Evaluated various architectures 

for adaptive learning with power 

optimization. 

Awad et al. 2024 Battery drainage 

minimization 

techniques 

Developed a recommendation 

system to minimize battery 

drainage in smartphones. 

2.3. Android's Background Execution Limits 

Recent Android versions have introduced background execution limits, crucial for managing 

power consumption [8, 9]. Hurbungs et al. research, focusing on Android 8.0 (Oreo), discusses 
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trade-offs between resource efficiency and application performance [11, 16-18]. Limiting 

background services improves battery life, but applications struggle to adapt under real-time 

demands. This paper builds on Hurbungs' findings by offering practical solutions for 

developers to use WorkManager and job schedulers to mitigate background execution limits 

[10]. 

2.4. Gap in Current Literature 

Previous studies by Marimuthu and Hurbungs provide insights into Android's power 

management techniques, but a gap remains in practical guidelines for optimizing apps under 

new constraints [13]. This paper addresses this gap by proposing a framework for developers 

to adapt their applications to the evolving power management landscape, balancing energy 

efficiency and app performance without compromising essential functionality. Summary of the 

literature survey is as shown in Tab-1. 

3. Proposed Approach 

The proposed work aims to provide a more developer-centric approach compared to previous 

studies, offering clear strategies for optimizing applications under Android’s power restrictions. 

By synthesizing insights from the literature, this paper presents an approach leveraging existing 

power-saving features while minimizing their impact on application functionality. Specifically, 

we discuss how developers can use Android APIs like WorkManager, JobScheduler, and the 

Adaptive Battery framework to optimize energy efficiency [4]. 

4. Power Management in Android OS 

4.1 Early Power Management Techniques 

 

Android OS initially used basic power-saving techniques like limiting background processes 

and reducing screen brightness [14]. However, as applications grew complex, more 

sophisticated approaches became necessary [16][17]. Optimization strategies for developers 

are as shown in Fig. 2. 

4.2. Doze Mode and App Standby 

Introduced in Android 6.0, Doze mode and App Standby restrict network and processing 

resources for inactive apps, significantly extending battery life [12, 15]. Research by 

Marimuthu et al. shows Doze mode's effectiveness in battery optimization, though its benefits 

vary based on user behavior and app category [6].  

4.2.1. Optimization Strategy for Doze Mode: 

a) Use High-Priority FCM Messages: Developers can use Firebase Cloud Messaging 

(FCM) to send high-priority messages that can wake the device from Doze Mode. This 

is useful for apps that need to notify users in real time, like messaging or emergency 

apps. However, developers should be cautious not to misuse high-priority messages as 

excessive use can degrade battery performance and lead to app uninstallation. 

b) JobScheduler API for Deferred Tasks: Apps should defer non-urgent tasks by 
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scheduling jobs using the JobScheduler API. Jobs scheduled with 

setRequiresDeviceIdle() can run during maintenance windows in Doze Mode, allowing 

the system to bundle tasks and optimize battery use. 

c) Optimize AlarmManager Usage: AlarmManager should only be used when absolutely 

necessary, as alarms are deferred during Doze Mode unless they are high-priority 

alarms. If an alarm is critical, it can be scheduled with setExactAndAllowWhileIdle(), 

but such usage should be minimized to avoid draining the battery. 

d) Network Batching and Caching: Since Doze Mode restricts network access, developers 

can optimize their apps by batching network operations and caching data when the 

device is active. Apps should synchronize data during the brief maintenance windows 

that occur periodically in Doze Mode. 

 

 

Figure 2. Optimization Strategies for Developers 

4.2.2. Optimization Strategy for App Standby: 

a) Use WorkManager for Background Tasks: WorkManager is a robust solution for 

managing background tasks that ensures tasks are completed while respecting system 

restrictions. WorkManager can manage constraints such as network availability and 

charging status and can queue tasks to be executed once the device exits App Standby 

or Doze Mode. 

b) Respect App Standby Buckets: Starting with Android 9 (Pie), apps are classified into 

standby buckets based on usage frequency (Active, Working Set, Frequent, and Rare). 

Apps should avoid unnecessary background processing to stay in higher buckets 

(Active or Working Set) and improve performance while minimizing battery drain. 

Developers can monitor app bucket status through the UsageStatsManager API and 

adapt their app behavior accordingly. 

c) Incorporate User Engagement Strategies: To prevent apps from being placed in standby, 

developers can implement features that encourage periodic user engagement. For 
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example, apps can send notifications about new content, but these notifications should 

be meaningful and non-intrusive to avoid annoying the user and leading to 

uninstallation. 

d) Handle Background Services with Care: Background services are a common source of 

power drain, and Android limits their use in App Standby. Developers should replace 

persistent background services with scheduled jobs or use foreground services when 

real-time tasks are necessary. Foreground services display a persistent notification, 

which informs users about the app's background activity and prevents excessive power 

consumption. 

5. Background Execution Limits 

Android introduced background execution limits in Android 8.0 (Oreo) to manage energy 

consumption of applications, especially those performing background tasks without user 

interaction. These limits restrict apps from running background services when not in active use, 

requiring developers to rethink how they manage background activities without impacting 

performance [11-13]. This section proposes a suite of developer tools and strategies to balance 

performance with compliance to these limits. 

5.1. WorkManager 

WorkManager is Android’s recommended solution for handling background tasks that 

require guaranteed execution, regardless of app state or device reboot. It simplifies managing 

background jobs by respecting system restrictions, such as Doze Mode and background 

execution limits, while allowing tasks to be deferred or batched based on the system's power 

state. 

5.1.1. Advantages of WorkManager: 

a) Guaranteed Task Completion: Ensures tasks complete even if the app is terminated or 

the device restarts, ideal for tasks like periodic data syncs and logging. 

b) Chaining and Constraining Work: Enables chaining multiple tasks and setting 

constraints, such as network or charging requirements, optimizing battery usage by 

executing tasks in optimal states. 

c) Flexibility in Execution: Allows developers to defer tasks until the device exits battery-

saving modes, suitable for tasks that can wait for network availability. 

5.1.2. Optimization Strategy with WorkManager: 

• Use OneTimeWorkRequest for tasks needing a single execution. 

• Use PeriodicWorkRequest for periodic tasks, such as refreshing server data every 24 

hours. 

• Chain related tasks using WorkContinuation for sequential or parallel execution, 

adhering to device power constraints. 

5.2. JobScheduler 
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JobScheduler, introduced in Android 5.0 (Lollipop), enables developers to schedule jobs 

based on conditions like network availability, charging state, and idle status. JobScheduler 

defers background work, optimizing battery life by grouping jobs from different apps to run in 

batches, reducing system wake-ups. 

5.2.1. Advantages of JobScheduler: 

• Batch Execution: Schedules jobs to run together, reducing CPU wake-ups and 

optimizing battery consumption. 

• Device-Specific Constraints: Allows conditions like “run only on Wi-Fi” or “run only 

when idle”, ensuring background tasks operate in power-efficient scenarios. 

• Automatic Re-execution: Jobs failing due to unmet conditions are retried automatically, 

ensuring essential background tasks complete eventually without affecting user 

experience. 

5.2.2. Optimization Strategy with JobScheduler: 

• Schedule non-urgent tasks like syncing logs or backups using JobInfo.Builder with 

constraints like setRequiresCharging() and setRequiresDeviceIdle(). 

• Use JobInfo.setMinimumLatency() and setOverrideDeadline() to defer tasks or ensure 

timely execution, balancing performance and energy use. 

5.3. Foreground Services 

For apps needing continuous background execution, such as media players or GPS 

navigation, Android provides Foreground Services, exempt from background execution limits 

but requiring a persistent notification to inform users of their operation [16, 17]. 

5.3.1. Advantages of Foreground Services: 

• Real-Time Execution: Ideal for tasks requiring continuous real-time operation, such as 

playing music or tracking location. 

• Persistent Notifications: Provides transparency, allowing users to stop the service if no 

longer needed. 

5.3.2. Optimization Strategy with Foreground Services: 

a) Use foreground services only for tasks needing continuous background activity and 

immediate execution. 

b) Ensure the persistent notification provides clear, actionable information, like an option 

to stop the service. 

c) Minimize foreground service use by transitioning to WorkManager or JobScheduler 

when real-time processing is unnecessary. 

5.4. Broadcast Receivers and Pending Intents 

Broadcast Receivers and Pending Intents enable developers to schedule tasks based on 

specific system events, like device reboot or network availability. These tools are essential for 
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apps needing to listen to system-wide events without continuous background activity. 

5.4.1. Advantages of BroadcastReceivers and PendingIntents: 

a) Event-Driven Execution: Efficiently performs background tasks only when necessary 

by responding to system broadcasts (e.g., ACTION_BOOT_COMPLETED), reducing 

battery drain. 

b) Minimal Resource Consumption: Remain passive until activated by the specific event 

they monitor. 

5.4.2. Optimization Strategy with BroadcastReceivers and PendingIntents: 

a) Use PendingIntent to schedule alarms, notifications, or service starts without running 

continuous background processes. 

b) Limit the use of implicit broadcasts (restricted from Android 8.0 onward) and register 

for explicit broadcasts or use JobScheduler for essential background work triggered by 

events. 

5.5. Battery Historian and Profiling Tools 

Battery Historian is a powerful tool for identifying battery-draining behavior in apps. By 

analyzing wake locks, network usage, and background activity, developers can optimize app 

performance to comply with Android’s background execution limits while maximizing battery 

life. 

5.5.1. Advantages of Battery Historian: 

a) Detailed Performance Metrics: Provides extensive logs on app behavior during 

background execution, like wake lock usage, job scheduling efficiency, and Doze 

Mode performance. 

b) Troubleshooting Power Drains: Pinpoints specific components causing battery drain, 

allowing targeted optimization or refactoring. 

5.5.2. Optimization Strategy with Battery Historian: 

• Regularly profile the app during testing to identify and resolve battery-draining 

behaviors. 

• Minimize wake locks and background network usage to comply with background 

execution limits and improve battery efficiency. 

5.6. Adaptive Battery API 

The Adaptive Battery API, introduced in Android 9 (Pie), uses machine learning to prioritize 

battery usage based on user interaction patterns. Apps less frequently accessed face restricted 

background resource usage, while frequently used apps receive more leniency. 

5.6.1. Advantages of Adaptive Battery: 

a) Intelligent Battery Optimization: Optimizes background tasks according to app usage 

frequency, reducing battery drain for infrequently used apps without intervention. 
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b) Auto-Management of Background Tasks: Automatically restricts less frequently used 

apps, enabling developers to focus on optimizing high-priority tasks. 

5.6.2. Optimization Strategy with Adaptive Battery: 

• Respect background execution limits enforced by Adaptive Battery to avoid excessive 

resource consumption for infrequent app usage. 

• Encourage users to whitelist critical real-time services, like fitness tracking or 

emergency alerts, ensuring reliable functionality in low-power conditions. 

 

By leveraging these tools and strategies, developers can align with Android’s background 

execution limits, optimizing both app performance and battery efficiency while ensuring a 

positive user experience under power-saving constraints.. 

6. Challenges & Best Practices for Developers 

Adapting applications to comply with Android's power restrictions presents significant 

challenges for developers. Background services, essential for app functionality, may not 

operate as expected under these limits. This section outlines strategies to address these 

challenges, particularly through the use of job schedulers and WorkManager APIs. Schematic 

layout for Challenges and best practices for developers are as shown in Fig.3. 

6.1. Power-Sensitive User Settings 

6.1.1. Impact on User Experience:  

User preferences for power usage vary widely—some prioritize real-time updates and 

performance, while others aim to extend battery life as much as possible [17]. A universal 

approach to power settings may leave users unsatisfied, especially those who prefer control 

over app power usage. 

6.1.2. Solution: Offer Power-Sensitive Settings for Users.  

Provide customizable settings for background activity, sync frequency, and notifications, 

enabling users to balance performance and power consumption as per their needs. 

6.1.3. Best Practices: 

• Allow users to toggle background sync, update frequency, and notifications, with preset 

modes such as “High Performance”, “Balanced”, and “Battery Saver”. 

• Enable users to disable background tasks when the battery is low, letting them optimize 

performance based on immediate needs. 

• Clearly communicate the impact of each setting on battery usage and performance, so 

users understand the trade-offs. 
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Figure 3. Challenges and best practices for developers 

6.2. Efficient Data Fetching and Syncing 

6.2.1. Impact on User Experience: 

Frequent data fetching, like real-time updates or syncing, can drain battery life quickly [18]. 

Reducing update frequency may lead to outdated content, frustrating users who expect timely 

information (e.g., news feeds, stock updates). 

6.2.2. Solution: Batch Network Requests and Implement Data Caching 

Batching network requests reduces battery drain, and local caching enables content display 

even offline or when updates are delayed. 

6.2.3. Best Practices: 

• Batch network requests to minimize background activity, such as fetching data only 

once an hour or when the app is open. 

• Cache critical data locally to ensure users can access recent content even if real-time 

updates are delayed. 

• Use WorkManager or JobScheduler for periodic data syncing during optimal conditions, 

like Wi-Fi connection or charging, to enhance energy efficiency. 

6.3. Adaptive Battery and App Standby Buckets 

6.3.1. Impact on User Experience: 

With Android 9 (Pie), Adaptive Battery uses machine learning to limit background activity 

for infrequently used apps [19]. Apps are categorized into standby buckets (Active, Working 

Set, Frequent, Rare) based on usage. Apps in lower buckets face more background restrictions, 

which can impact performance when users return to them. 

6.3.2. Solution: Encourage User Engagement to Maintain Higher Standby Buckets 
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By providing relevant notifications and features that align with user habits, developers can 

encourage engagement that keeps the app in a higher standby bucket, allowing more 

background resources. 

6.3.3. Best Practices: 

• Drive user engagement through reminders, content updates, or features prompting users 

to open the app, helping maintain higher-priority buckets. 

• Ensure notifications are valuable and actionable but avoid excessive alerts that may 

lead to uninstalls. 

• Use Google Play’s Pre-launch report to test the app's behavior on different devices 

under Adaptive Battery settings, ensuring a consistent user experience. 

6.4. Testing and Profiling Tools 

6.4.1. Impact on User Experience: 

Balancing performance with power efficiency without impacting user experience is 

challenging. Testing app behavior under power restrictions, such as Doze Mode or App Standby, 

is crucial for optimization. 

6.4.2. Solution: Use Android’s Testing and Profiling Tools 

Android offers tools like Battery Historian, ADB Shell commands, and Profiler to identify 

and optimize performance bottlenecks related to power consumption. These tools help 

developers pinpoint excessive background activity, wake locks, and delayed tasks for battery 

efficiency. 

6.4.3. Best Practices: 

• Regularly use Battery Historian to analyze battery usage and identify excessive 

background activities, ensuring optimal app performance. 

• Simulate Doze Mode and App Standby using commands like adb shell dumpsys battery 

set level and adb shell cmd appops set <PACKAGE> 

RUN_ANY_IN_BACKGROUND ignore to observe app behavior under power-saving 

conditions. 

• Continuously test and adjust background behavior to provide a smooth user experience 

while adhering to Android’s power-saving guidelines. 

 

These strategies and best practices help developers navigate Android’s power restrictions, 

optimizing both app functionality and battery efficiency for a balanced and user-friendly 

experience. 

7. Future Directions 

As the Android ecosystem continues to evolve, power management remains a focal point, 

with future versions likely to introduce even stricter energy-saving measures. Developers will 

need to adapt their applications to meet these new standards. Research in AI-driven energy 
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management, among other areas, could open new pathways for extending battery life without 

compromising performance. 

7.1. AI-Driven Energy Management Solutions 

AI presents a promising avenue for optimizing power consumption. AI-based models can 

predict user needs for real-time updates, defer non-essential tasks, and identify optimal times 

for network access [20]. Advancing AI-driven power optimization could significantly minimize 

unnecessary background activities, enhancing battery life while preserving user experience. 

7.1.1. Research Opportunities: 

• Development of AI algorithms that dynamically adjust app behavior in real-time based 

on predictive models of user behavior and device state. 

• Exploration of on-device machine learning models that operate independently from the 

cloud, predicting optimal power usage scenarios and proactively managing app 

performance. 

• Investigation into AI-powered task prioritization algorithms that learn from user activity, 

allocating resources to critical tasks while conserving energy on lower-priority 

processes. 

7.2. Cross-Platform Energy Optimization Frameworks 

With developers increasingly building apps for both Android and iOS, a unified approach to 

power optimization is essential. Cross-platform frameworks that allow developers to write code 

once and implement energy-saving strategies on multiple platforms could simplify 

development and ensure consistency [23, 24]. Cross-platform tools that effectively manage 

energy efficiency without compromising performance on either system are a promising area of 

research. 

7.2.1. Research Opportunities: 

• Development of cross-platform libraries that standardize power management and 

background task scheduling across Android and iOS, promoting consistent energy 

efficiency. 

• Exploration of power-saving APIs compatible with hybrid or cross-platform 

environments, such as React Native or Flutter. 

• Harmonizing platform-specific features, like Android’s Adaptive Battery and iOS’s 

Background App Refresh, to ensure consistent energy management across devices. 

7.3. Optimizing Power Usage in Emerging Technologies 

The integration of technologies like 5G, augmented reality (AR), and the Internet of Things 

(IoT) in mobile devices presents new challenges in balancing performance and battery life. 

These technologies require intensive processing and high network usage, quickly draining 

battery life [21, 22]. Research is essential to find ways for these technologies to operate on 

mobile devices efficiently. 
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7.3.1. Research Opportunities: 

• Optimizing 5G networks for mobile battery efficiency, focusing on balancing high data 

throughput with lower power consumption. 

• Development of energy-efficient rendering techniques for AR applications that 

maintain real-time performance while conserving battery life. 

• Investigation into how IoT-connected mobile apps can manage power resources 

effectively, maintaining connectivity and functionality without excessive power drain. 

7.4. Energy-Efficient Mobile AI and Edge Computing 

The growing use of AI models on mobile devices, especially for edge computing, calls for a 

reevaluation of energy consumption [25]. Research should focus on optimizing AI model 

execution within power-saving features like Doze Mode and App Standby, ensuring these 

powerful tools don’t heavily drain device resources [26]. 

7.4.1. Research Opportunities: 

• Development of lightweight AI models optimized for mobile devices to minimize 

battery impact. 

• Exploration of energy-efficient edge computing frameworks that shift intensive 

processing to the cloud while optimizing on-device performance under low-power 

conditions. 

• Investigation into AI-driven task optimization for mobile devices, ensuring background 

services powered by AI models operate with minimal energy consumption while 

delivering high performance. 

7.5. Context-Aware Energy Management 

Context-aware computing holds significant potential for improving energy efficiency. By 

leveraging environmental data (e.g., location, time, user movement), apps can intelligently 

manage background activity and battery usage. This adaptive approach allows apps to respond 

dynamically to user behavior and environmental conditions, enhancing both power efficiency 

and user experience. 

7.5.1. Research Opportunities: 

• Development of context-aware task scheduling, where background tasks are triggered 

based on user context, such as when the user is stationary or connected to a network. 

• Exploration of environment-driven optimizations, enabling apps to adjust background 

activity based on factors like location (e.g., connecting to Wi-Fi when near a known 

network). 

• Investigation of adaptive notification systems that deliver important messages only 

when the user is in an optimal state to receive them, such as when charging or actively 

engaged with the device. 
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The future of mobile app development will be shaped by a shift towards smarter, energy-

efficient strategies that blend machine learning, AI-driven optimizations, and enhanced user 

engagement features. Emerging technologies like 5G, AR, IoT, and edge computing bring new 

power challenges, necessitating continued research. Collaboration among developers, device 

manufacturers, and the research community will be key to developing solutions that balance 

performance, power, and user satisfaction in future Android applications. 
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