
International Journal of Computer Science and Information Technology Research (IJCSITR)
2024, Vol. 5, No. 4, October- December, pp. 1-16

Journal ID: 9471-1297

website: www.ijcsitr.com

Power Restrictions for Android OS: Managing Energy

Efficiency and System Performance

Darshan Mohan Bidkar1, Vivekananda Jayaram2, Manjunatha Sughaturu Krishnappa3,

Amey Ram Banarse4, Gaurav Mehta5, Koushik Kumar Ganeeb6, Shenson Joseph7,

Prema kumar Veerapaneni8,

1ORCID: 0009-0001-0057-0527, 2ORCID: 0009-0004-9389-9074,3ORCID: 0009-0009-5260-0503,
4ORCID: 0009-0001-1515-3240, 5ORCID: 0009-0005-0911-3081, 6ORCID: 0009-0002-3751-3195,
7ORCID: 0009-0001-5191-5556, 8ORCID: 0009-0003-5421-8515

Abstract

Power management is critical for enhancing the performance and longevity of mobile devices

running the Android operating system. This paper examines the evolution of power restrictions in

Android OS, focusing on recent advancements in energy-efficient application management. We

analyze key mechanisms such as Doze mode, App Standby, and background execution limits, and

their impact on extending battery life while maintaining a balance between user experience and

system performance. The paper also address the challenges developers encounter in optimizing

applications within these constraints, offering insights into best practices and future pathways for

enhancing energy efficiency in Android-powered devices.

Keywords:

Android OS power management, Efficient data fetching and syncing, AI-driven power

optimization, Context-aware energy management, Energy efficiency in mobile devices

How to Cite: Bidkar, D.M., Jayaram, V., Krishnappa, M.S., Banarse, A.R., Mehta, G., Ganeeb,

K.K., Joseph, S., Veerapaneni, P.K. (2024). Power Restrictions for Android OS: Managing Energy

Efficiency and System Performance. International Journal of Computer Science and Information

Technology Research, 5(4), 1–16. DOI: https://doi.org/10.5281/zenodo.14028551

Article Link: https://ijcsitr.com/index.php/home/article/view/IJCSITR_2024_05_04_01/IJCSITR_2024_05_04_01

Copyright: © The Author(s), 2024. Published by IJCSITR Corporation. This is an Open Access article,

distributed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International

License (https://creativecommons.org/licenses/by-nc/4.0/deed.en), which permits free sharing and ad-

aptation of the work for non-commercial purposes, as long as appropriate credit is given to the creator.

Commercial use requires explicit permission from the creator.

http://www.ijcsitr.com/
https://iaeme.com/Home/issue/IJEET

International Journal of Computer Science and Information Technology Research (IJCSITR) https://ijcsitr.com

2

1. Introduction

The widespread adoption of smartphones has led to an increasing demand for devices that

are both powerful and energy-efficient. Battery life is a key consideration for users, as longer

battery life enhances the usability and convenience of mobile devices. The Android operating

system, which is one of the most widely used mobile platforms, has implemented various

power management strategies to address these user needs.

Early versions of Android featured basic power-saving measures, such as limiting

background processes and adjusting screen brightness, but these methods were insufficient as

applications grew more complex and power-hungry. In response, Google introduced more

sophisticated power management features in subsequent Android versions to enhance battery

performance while minimizing disruptions to user experience [1, 13,14].

This paper aims to provide a comprehensive overview of the evolution of power-saving

mechanisms in Android, including Doze mode, App Standby, and background execution limits

[6]. We examine the effectiveness of these features in reducing energy consumption and explore

their impact on both application performance and battery longevity. Additionally, the paper

presents guidelines for developers to optimize their applications for energy efficiency while

maintaining the desired level of performance [13, 14].

2. Literature Review

2.1. Overview of Power Management in Android OS

Power management in Android OS has evolved significantly over the years, with each new

version introducing features to optimize energy consumption. Google's documentation

highlights mechanisms such as Doze mode, App Standby, and background execution limits

introduced in recent Android versions [1]. However, a thorough evaluation of their impact on

application behavior and user experience remains a subject of ongoing research. Studies have

shown the benefits and challenges of these power management mechanisms [2, 3]. Evolution

of Android power management is shown in Fig.1.

Figure 1. Android power management evolution

2.2. Comparative Studies on Power Optimization Techniques

International Journal of Computer Science and Information Technology Research (IJCSITR) https://ijcsitr.com

3

Optimizing Android power consumption involves analyzing various strategies employed by

Android OS [4]. User behavior patterns, such as device usage and idle times, play a role in

determining power management techniques [5]. Marimuthu et al. highlighted that while Doze

mode and App Standby effectively extend battery life during idle states, they may delay

background tasks, affecting real-time applications. This paper proposes a balanced approach to

maintain app functionality while still benefiting from power-saving features, focusing on

dynamic app behavior adaptation [6][7].

Table-1. Literature survey summary

Author(s) Year Focus Area Key Findings

Marimuthu et

al.

2021 Doze Mode and

App Standby

impacts on real-

time applications

Doze Mode and App Standby

extend battery life but may delay

background tasks.

Hurbungs et al. 2016 Trade-offs

between resource

efficiency and

performance in

Android 8.0

Background limits improve

battery life but hinder adaptation

for real-time demands.

Gupta et al. 2024 Battery

optimization in

Android

applications

Proposed solutions to reduce

battery consumption for various

app categories.

Souza et al. 2024 Energy

consumption

optimization

techniques

Recommendations for reducing

energy consumption in mobile

applications.

Ruiz

Nepomuceno et

al.

2024 Systematic review

on adaptive

mobile learning

systems

Evaluated various architectures

for adaptive learning with power

optimization.

Awad et al. 2024 Battery drainage

minimization

techniques

Developed a recommendation

system to minimize battery

drainage in smartphones.

2.3. Android's Background Execution Limits

Recent Android versions have introduced background execution limits, crucial for managing

power consumption [8, 9]. Hurbungs et al. research, focusing on Android 8.0 (Oreo), discusses

International Journal of Computer Science and Information Technology Research (IJCSITR) https://ijcsitr.com

4

trade-offs between resource efficiency and application performance [11, 16-18]. Limiting

background services improves battery life, but applications struggle to adapt under real-time

demands. This paper builds on Hurbungs' findings by offering practical solutions for

developers to use WorkManager and job schedulers to mitigate background execution limits

[10].

2.4. Gap in Current Literature

Previous studies by Marimuthu and Hurbungs provide insights into Android's power

management techniques, but a gap remains in practical guidelines for optimizing apps under

new constraints [13]. This paper addresses this gap by proposing a framework for developers

to adapt their applications to the evolving power management landscape, balancing energy

efficiency and app performance without compromising essential functionality. Summary of the

literature survey is as shown in Tab-1.

3. Proposed Approach

The proposed work aims to provide a more developer-centric approach compared to previous

studies, offering clear strategies for optimizing applications under Android’s power restrictions.

By synthesizing insights from the literature, this paper presents an approach leveraging existing

power-saving features while minimizing their impact on application functionality. Specifically,

we discuss how developers can use Android APIs like WorkManager, JobScheduler, and the

Adaptive Battery framework to optimize energy efficiency [4].

4. Power Management in Android OS

4.1 Early Power Management Techniques

Android OS initially used basic power-saving techniques like limiting background processes

and reducing screen brightness [14]. However, as applications grew complex, more

sophisticated approaches became necessary [16][17]. Optimization strategies for developers

are as shown in Fig. 2.

4.2. Doze Mode and App Standby

Introduced in Android 6.0, Doze mode and App Standby restrict network and processing

resources for inactive apps, significantly extending battery life [12, 15]. Research by

Marimuthu et al. shows Doze mode's effectiveness in battery optimization, though its benefits

vary based on user behavior and app category [6].

4.2.1. Optimization Strategy for Doze Mode:

a) Use High-Priority FCM Messages: Developers can use Firebase Cloud Messaging

(FCM) to send high-priority messages that can wake the device from Doze Mode. This

is useful for apps that need to notify users in real time, like messaging or emergency

apps. However, developers should be cautious not to misuse high-priority messages as

excessive use can degrade battery performance and lead to app uninstallation.

b) JobScheduler API for Deferred Tasks: Apps should defer non-urgent tasks by

International Journal of Computer Science and Information Technology Research (IJCSITR) https://ijcsitr.com

5

scheduling jobs using the JobScheduler API. Jobs scheduled with

setRequiresDeviceIdle() can run during maintenance windows in Doze Mode, allowing

the system to bundle tasks and optimize battery use.

c) Optimize AlarmManager Usage: AlarmManager should only be used when absolutely

necessary, as alarms are deferred during Doze Mode unless they are high-priority

alarms. If an alarm is critical, it can be scheduled with setExactAndAllowWhileIdle(),

but such usage should be minimized to avoid draining the battery.

d) Network Batching and Caching: Since Doze Mode restricts network access, developers

can optimize their apps by batching network operations and caching data when the

device is active. Apps should synchronize data during the brief maintenance windows

that occur periodically in Doze Mode.

Figure 2. Optimization Strategies for Developers

4.2.2. Optimization Strategy for App Standby:

a) Use WorkManager for Background Tasks: WorkManager is a robust solution for

managing background tasks that ensures tasks are completed while respecting system

restrictions. WorkManager can manage constraints such as network availability and

charging status and can queue tasks to be executed once the device exits App Standby

or Doze Mode.

b) Respect App Standby Buckets: Starting with Android 9 (Pie), apps are classified into

standby buckets based on usage frequency (Active, Working Set, Frequent, and Rare).

Apps should avoid unnecessary background processing to stay in higher buckets

(Active or Working Set) and improve performance while minimizing battery drain.

Developers can monitor app bucket status through the UsageStatsManager API and

adapt their app behavior accordingly.

c) Incorporate User Engagement Strategies: To prevent apps from being placed in standby,

developers can implement features that encourage periodic user engagement. For

International Journal of Computer Science and Information Technology Research (IJCSITR) https://ijcsitr.com

6

example, apps can send notifications about new content, but these notifications should

be meaningful and non-intrusive to avoid annoying the user and leading to

uninstallation.

d) Handle Background Services with Care: Background services are a common source of

power drain, and Android limits their use in App Standby. Developers should replace

persistent background services with scheduled jobs or use foreground services when

real-time tasks are necessary. Foreground services display a persistent notification,

which informs users about the app's background activity and prevents excessive power

consumption.

5. Background Execution Limits

Android introduced background execution limits in Android 8.0 (Oreo) to manage energy

consumption of applications, especially those performing background tasks without user

interaction. These limits restrict apps from running background services when not in active use,

requiring developers to rethink how they manage background activities without impacting

performance [11-13]. This section proposes a suite of developer tools and strategies to balance

performance with compliance to these limits.

5.1. WorkManager

WorkManager is Android’s recommended solution for handling background tasks that

require guaranteed execution, regardless of app state or device reboot. It simplifies managing

background jobs by respecting system restrictions, such as Doze Mode and background

execution limits, while allowing tasks to be deferred or batched based on the system's power

state.

5.1.1. Advantages of WorkManager:

a) Guaranteed Task Completion: Ensures tasks complete even if the app is terminated or

the device restarts, ideal for tasks like periodic data syncs and logging.

b) Chaining and Constraining Work: Enables chaining multiple tasks and setting

constraints, such as network or charging requirements, optimizing battery usage by

executing tasks in optimal states.

c) Flexibility in Execution: Allows developers to defer tasks until the device exits battery-

saving modes, suitable for tasks that can wait for network availability.

5.1.2. Optimization Strategy with WorkManager:

• Use OneTimeWorkRequest for tasks needing a single execution.

• Use PeriodicWorkRequest for periodic tasks, such as refreshing server data every 24

hours.

• Chain related tasks using WorkContinuation for sequential or parallel execution,

adhering to device power constraints.

5.2. JobScheduler

International Journal of Computer Science and Information Technology Research (IJCSITR) https://ijcsitr.com

7

JobScheduler, introduced in Android 5.0 (Lollipop), enables developers to schedule jobs

based on conditions like network availability, charging state, and idle status. JobScheduler

defers background work, optimizing battery life by grouping jobs from different apps to run in

batches, reducing system wake-ups.

5.2.1. Advantages of JobScheduler:

• Batch Execution: Schedules jobs to run together, reducing CPU wake-ups and

optimizing battery consumption.

• Device-Specific Constraints: Allows conditions like “run only on Wi-Fi” or “run only

when idle”, ensuring background tasks operate in power-efficient scenarios.

• Automatic Re-execution: Jobs failing due to unmet conditions are retried automatically,

ensuring essential background tasks complete eventually without affecting user

experience.

5.2.2. Optimization Strategy with JobScheduler:

• Schedule non-urgent tasks like syncing logs or backups using JobInfo.Builder with

constraints like setRequiresCharging() and setRequiresDeviceIdle().

• Use JobInfo.setMinimumLatency() and setOverrideDeadline() to defer tasks or ensure

timely execution, balancing performance and energy use.

5.3. Foreground Services

For apps needing continuous background execution, such as media players or GPS

navigation, Android provides Foreground Services, exempt from background execution limits

but requiring a persistent notification to inform users of their operation [16, 17].

5.3.1. Advantages of Foreground Services:

• Real-Time Execution: Ideal for tasks requiring continuous real-time operation, such as

playing music or tracking location.

• Persistent Notifications: Provides transparency, allowing users to stop the service if no

longer needed.

5.3.2. Optimization Strategy with Foreground Services:

a) Use foreground services only for tasks needing continuous background activity and

immediate execution.

b) Ensure the persistent notification provides clear, actionable information, like an option

to stop the service.

c) Minimize foreground service use by transitioning to WorkManager or JobScheduler

when real-time processing is unnecessary.

5.4. Broadcast Receivers and Pending Intents

Broadcast Receivers and Pending Intents enable developers to schedule tasks based on

specific system events, like device reboot or network availability. These tools are essential for

International Journal of Computer Science and Information Technology Research (IJCSITR) https://ijcsitr.com

8

apps needing to listen to system-wide events without continuous background activity.

5.4.1. Advantages of BroadcastReceivers and PendingIntents:

a) Event-Driven Execution: Efficiently performs background tasks only when necessary

by responding to system broadcasts (e.g., ACTION_BOOT_COMPLETED), reducing

battery drain.

b) Minimal Resource Consumption: Remain passive until activated by the specific event

they monitor.

5.4.2. Optimization Strategy with BroadcastReceivers and PendingIntents:

a) Use PendingIntent to schedule alarms, notifications, or service starts without running

continuous background processes.

b) Limit the use of implicit broadcasts (restricted from Android 8.0 onward) and register

for explicit broadcasts or use JobScheduler for essential background work triggered by

events.

5.5. Battery Historian and Profiling Tools

Battery Historian is a powerful tool for identifying battery-draining behavior in apps. By

analyzing wake locks, network usage, and background activity, developers can optimize app

performance to comply with Android’s background execution limits while maximizing battery

life.

5.5.1. Advantages of Battery Historian:

a) Detailed Performance Metrics: Provides extensive logs on app behavior during

background execution, like wake lock usage, job scheduling efficiency, and Doze

Mode performance.

b) Troubleshooting Power Drains: Pinpoints specific components causing battery drain,

allowing targeted optimization or refactoring.

5.5.2. Optimization Strategy with Battery Historian:

• Regularly profile the app during testing to identify and resolve battery-draining

behaviors.

• Minimize wake locks and background network usage to comply with background

execution limits and improve battery efficiency.

5.6. Adaptive Battery API

The Adaptive Battery API, introduced in Android 9 (Pie), uses machine learning to prioritize

battery usage based on user interaction patterns. Apps less frequently accessed face restricted

background resource usage, while frequently used apps receive more leniency.

5.6.1. Advantages of Adaptive Battery:

a) Intelligent Battery Optimization: Optimizes background tasks according to app usage

frequency, reducing battery drain for infrequently used apps without intervention.

International Journal of Computer Science and Information Technology Research (IJCSITR) https://ijcsitr.com

9

b) Auto-Management of Background Tasks: Automatically restricts less frequently used

apps, enabling developers to focus on optimizing high-priority tasks.

5.6.2. Optimization Strategy with Adaptive Battery:

• Respect background execution limits enforced by Adaptive Battery to avoid excessive

resource consumption for infrequent app usage.

• Encourage users to whitelist critical real-time services, like fitness tracking or

emergency alerts, ensuring reliable functionality in low-power conditions.

By leveraging these tools and strategies, developers can align with Android’s background

execution limits, optimizing both app performance and battery efficiency while ensuring a

positive user experience under power-saving constraints..

6. Challenges & Best Practices for Developers

Adapting applications to comply with Android's power restrictions presents significant

challenges for developers. Background services, essential for app functionality, may not

operate as expected under these limits. This section outlines strategies to address these

challenges, particularly through the use of job schedulers and WorkManager APIs. Schematic

layout for Challenges and best practices for developers are as shown in Fig.3.

6.1. Power-Sensitive User Settings

6.1.1. Impact on User Experience:

User preferences for power usage vary widely—some prioritize real-time updates and

performance, while others aim to extend battery life as much as possible [17]. A universal

approach to power settings may leave users unsatisfied, especially those who prefer control

over app power usage.

6.1.2. Solution: Offer Power-Sensitive Settings for Users.

Provide customizable settings for background activity, sync frequency, and notifications,

enabling users to balance performance and power consumption as per their needs.

6.1.3. Best Practices:

• Allow users to toggle background sync, update frequency, and notifications, with preset

modes such as “High Performance”, “Balanced”, and “Battery Saver”.

• Enable users to disable background tasks when the battery is low, letting them optimize

performance based on immediate needs.

• Clearly communicate the impact of each setting on battery usage and performance, so

users understand the trade-offs.

International Journal of Computer Science and Information Technology Research (IJCSITR) https://ijcsitr.com

10

Figure 3. Challenges and best practices for developers

6.2. Efficient Data Fetching and Syncing

6.2.1. Impact on User Experience:

Frequent data fetching, like real-time updates or syncing, can drain battery life quickly [18].

Reducing update frequency may lead to outdated content, frustrating users who expect timely

information (e.g., news feeds, stock updates).

6.2.2. Solution: Batch Network Requests and Implement Data Caching

Batching network requests reduces battery drain, and local caching enables content display

even offline or when updates are delayed.

6.2.3. Best Practices:

• Batch network requests to minimize background activity, such as fetching data only

once an hour or when the app is open.

• Cache critical data locally to ensure users can access recent content even if real-time

updates are delayed.

• Use WorkManager or JobScheduler for periodic data syncing during optimal conditions,

like Wi-Fi connection or charging, to enhance energy efficiency.

6.3. Adaptive Battery and App Standby Buckets

6.3.1. Impact on User Experience:

With Android 9 (Pie), Adaptive Battery uses machine learning to limit background activity

for infrequently used apps [19]. Apps are categorized into standby buckets (Active, Working

Set, Frequent, Rare) based on usage. Apps in lower buckets face more background restrictions,

which can impact performance when users return to them.

6.3.2. Solution: Encourage User Engagement to Maintain Higher Standby Buckets

International Journal of Computer Science and Information Technology Research (IJCSITR) https://ijcsitr.com

11

By providing relevant notifications and features that align with user habits, developers can

encourage engagement that keeps the app in a higher standby bucket, allowing more

background resources.

6.3.3. Best Practices:

• Drive user engagement through reminders, content updates, or features prompting users

to open the app, helping maintain higher-priority buckets.

• Ensure notifications are valuable and actionable but avoid excessive alerts that may

lead to uninstalls.

• Use Google Play’s Pre-launch report to test the app's behavior on different devices

under Adaptive Battery settings, ensuring a consistent user experience.

6.4. Testing and Profiling Tools

6.4.1. Impact on User Experience:

Balancing performance with power efficiency without impacting user experience is

challenging. Testing app behavior under power restrictions, such as Doze Mode or App Standby,

is crucial for optimization.

6.4.2. Solution: Use Android’s Testing and Profiling Tools

Android offers tools like Battery Historian, ADB Shell commands, and Profiler to identify

and optimize performance bottlenecks related to power consumption. These tools help

developers pinpoint excessive background activity, wake locks, and delayed tasks for battery

efficiency.

6.4.3. Best Practices:

• Regularly use Battery Historian to analyze battery usage and identify excessive

background activities, ensuring optimal app performance.

• Simulate Doze Mode and App Standby using commands like adb shell dumpsys battery

set level and adb shell cmd appops set <PACKAGE>

RUN_ANY_IN_BACKGROUND ignore to observe app behavior under power-saving

conditions.

• Continuously test and adjust background behavior to provide a smooth user experience

while adhering to Android’s power-saving guidelines.

These strategies and best practices help developers navigate Android’s power restrictions,

optimizing both app functionality and battery efficiency for a balanced and user-friendly

experience.

7. Future Directions

As the Android ecosystem continues to evolve, power management remains a focal point,

with future versions likely to introduce even stricter energy-saving measures. Developers will

need to adapt their applications to meet these new standards. Research in AI-driven energy

International Journal of Computer Science and Information Technology Research (IJCSITR) https://ijcsitr.com

12

management, among other areas, could open new pathways for extending battery life without

compromising performance.

7.1. AI-Driven Energy Management Solutions

AI presents a promising avenue for optimizing power consumption. AI-based models can

predict user needs for real-time updates, defer non-essential tasks, and identify optimal times

for network access [20]. Advancing AI-driven power optimization could significantly minimize

unnecessary background activities, enhancing battery life while preserving user experience.

7.1.1. Research Opportunities:

• Development of AI algorithms that dynamically adjust app behavior in real-time based

on predictive models of user behavior and device state.

• Exploration of on-device machine learning models that operate independently from the

cloud, predicting optimal power usage scenarios and proactively managing app

performance.

• Investigation into AI-powered task prioritization algorithms that learn from user activity,

allocating resources to critical tasks while conserving energy on lower-priority

processes.

7.2. Cross-Platform Energy Optimization Frameworks

With developers increasingly building apps for both Android and iOS, a unified approach to

power optimization is essential. Cross-platform frameworks that allow developers to write code

once and implement energy-saving strategies on multiple platforms could simplify

development and ensure consistency [23, 24]. Cross-platform tools that effectively manage

energy efficiency without compromising performance on either system are a promising area of

research.

7.2.1. Research Opportunities:

• Development of cross-platform libraries that standardize power management and

background task scheduling across Android and iOS, promoting consistent energy

efficiency.

• Exploration of power-saving APIs compatible with hybrid or cross-platform

environments, such as React Native or Flutter.

• Harmonizing platform-specific features, like Android’s Adaptive Battery and iOS’s

Background App Refresh, to ensure consistent energy management across devices.

7.3. Optimizing Power Usage in Emerging Technologies

The integration of technologies like 5G, augmented reality (AR), and the Internet of Things

(IoT) in mobile devices presents new challenges in balancing performance and battery life.

These technologies require intensive processing and high network usage, quickly draining

battery life [21, 22]. Research is essential to find ways for these technologies to operate on

mobile devices efficiently.

International Journal of Computer Science and Information Technology Research (IJCSITR) https://ijcsitr.com

13

7.3.1. Research Opportunities:

• Optimizing 5G networks for mobile battery efficiency, focusing on balancing high data

throughput with lower power consumption.

• Development of energy-efficient rendering techniques for AR applications that

maintain real-time performance while conserving battery life.

• Investigation into how IoT-connected mobile apps can manage power resources

effectively, maintaining connectivity and functionality without excessive power drain.

7.4. Energy-Efficient Mobile AI and Edge Computing

The growing use of AI models on mobile devices, especially for edge computing, calls for a

reevaluation of energy consumption [25]. Research should focus on optimizing AI model

execution within power-saving features like Doze Mode and App Standby, ensuring these

powerful tools don’t heavily drain device resources [26].

7.4.1. Research Opportunities:

• Development of lightweight AI models optimized for mobile devices to minimize

battery impact.

• Exploration of energy-efficient edge computing frameworks that shift intensive

processing to the cloud while optimizing on-device performance under low-power

conditions.

• Investigation into AI-driven task optimization for mobile devices, ensuring background

services powered by AI models operate with minimal energy consumption while

delivering high performance.

7.5. Context-Aware Energy Management

Context-aware computing holds significant potential for improving energy efficiency. By

leveraging environmental data (e.g., location, time, user movement), apps can intelligently

manage background activity and battery usage. This adaptive approach allows apps to respond

dynamically to user behavior and environmental conditions, enhancing both power efficiency

and user experience.

7.5.1. Research Opportunities:

• Development of context-aware task scheduling, where background tasks are triggered

based on user context, such as when the user is stationary or connected to a network.

• Exploration of environment-driven optimizations, enabling apps to adjust background

activity based on factors like location (e.g., connecting to Wi-Fi when near a known

network).

• Investigation of adaptive notification systems that deliver important messages only

when the user is in an optimal state to receive them, such as when charging or actively

engaged with the device.

International Journal of Computer Science and Information Technology Research (IJCSITR) https://ijcsitr.com

14

The future of mobile app development will be shaped by a shift towards smarter, energy-

efficient strategies that blend machine learning, AI-driven optimizations, and enhanced user

engagement features. Emerging technologies like 5G, AR, IoT, and edge computing bring new

power challenges, necessitating continued research. Collaboration among developers, device

manufacturers, and the research community will be key to developing solutions that balance

performance, power, and user satisfaction in future Android applications.

References

[1] Google, "Power management," Android Developers. Available:

https://developer.android.com/about/versions/pie/power. [Accessed: 25-Sep-2024].

[2] A. Gupta, B. Suri, D. Sharma, S. Misra, and L. Fernandez-Sanz, "Code Smells Analysis

for Android Applications and a Solution for Less Battery Consumption," Scientific

Reports, vol. 14, no. 1, pp. 17683, 2024.

[3] E. Souza, E. M. R. Barreto, and R. de Freitas, "Optimizing Energy Consumption,"

Intelligent Systems Design and Applications: Industrial Applications, Volume 6, vol. 6, p.

1, 2024.

[4] A. Ruiz Nepomuceno, E. López Domínguez, S. Domínguez Isidro, M. A. Medina Nieto,

A. Meneses-Viveros, and J. de la Calleja, "Software Architectures for Adaptive Mobile

Learning Systems: A Systematic Literature Review," Applied Sciences, vol. 14, no. 11, p.

4540, 2024.

[5] Y. Awad, I. Hegazy, and E.-S. M. El-Horbaty, "Power-saving actionable recommendation

system to minimize battery drainage in smartphones," International Journal of Information

Technology, pp. 1–9, 2024.

[6] C. Marimuthu, S. Chimalakonda, and K. Chandrasekaran, "How do open source app

developers perceive API changes related to Android battery optimization? An empirical

study," Software: Practice and Experience, vol. 51, no. 4, pp. 691-710, 2021, doi:

https://doi.org/10.1002/spe.2928.

[7] C. Groza, D.-C. Apostol, M. Marcu, and R. Bogdan, "A Developer-Oriented Framework

for Assessing Power Consumption in Mobile Applications: Android Energy Smells Case

Study," Sensors (Basel, Switzerland), vol. 24, no. 19, pp. 6469, 2024.

[8] Y. M. Awad, E.-S. M. El-Horabty, and I. Hegazy, "Proposed Methodology for Battery

Aging and Drainage Mitigation," International Journal of Intelligent Computing and

Information Sciences, Ain Shams University, Faculty of Computer and Information

Science, 2024.

[9] S. He, Y. Liu, and H. Zhou, "Optimizing Smartphone Power Consumption through

Dynamic Resolution Scaling," presented at the 21st Annual International Conference on

Mobile Computing and Networking (MobiCom), Paris, France, 2015.

[10] M. H. Memon, M. Hunain, A. Khan, R. A. Shaikh, and I. Khan, "Power management for

International Journal of Computer Science and Information Technology Research (IJCSITR) https://ijcsitr.com

15

Android platform by Set CPU," in 2016 3rd International Conference on Computing for

Sustainable Global Development (INDIACom), New Delhi, India, 2016, pp. 3953-3958.

[11] V. Hurbungs, Y. Beeharry, A. K. Calkee, and G. Ahotar, "An Energy Efficient Android

Application," ADBU Journal of Engineering (AJET), vol. 4, pp. 1-8, 2016.

[12] A. Cañete, J.-M. Horcas, I. Ayala, and L. Fuentes, "Energy efficient adaptation engines for

android applications," Information and Software Technology, vol. 118, p. 106220, 2020,

doi: https://doi.org/10.1016/j.infsof.2019.106220.

[13] G. F. Welch, "A survey of power management techniques in mobile computing operating

systems," SIGOPS Oper. Syst. Rev., vol. 29, no. 4, pp. 47-56, Oct. 1995, doi:

https://doi.org/10.1145/219282.219293.

[14] A. Abdelmotalib and Z. Wu, "Power Management Techniques in Smartphones Operating

Systems," International Journal of Computer Science Issues, vol. 9, no. 6, pp. 78-85, 2012.

[15] L. Zhang, B. Tiwana, R. P. Dick, Z. Qian, Z. M. Mao, Z. Wang, and L. Yang, "Accurate

online power estimation and automatic battery behavior based power model generation for

smartphones," in 2010 IEEE/ACM/IFIP International Conference on Hardware/Software

Codesign and System Synthesis (CODES+ISSS), Scottsdale, AZ, USA, 2010, pp. 105-114.

[16] R. Rua and J. Saraiva, "A large-scale empirical study on mobile performance: energy,

runtime and memory," Empirical Software Engineering, vol. 29, no. 1, p. 31, Dec. 2023,

doi: https://doi.org/10.1007/s10664-023-10391-y.

[17] A. A. Bangash, K. Ali, and A. Hindle, "A black box technique to reduce energy

consumption of Android apps," in Proceedings of the ACM/IEEE 44th International

Conference on Software Engineering: New Ideas and Emerging Results, Pittsburgh, PA,

USA, 2022, pp. 1-5, doi: https://doi.org/10.1145/3510455.3512795.

[18] A. Biørn-Hansen, C. Rieger, T.-M. Grønli, T. A. Majchrzak, and G. Ghinea, "An empirical

investigation of performance overhead in cross-platform mobile development

frameworks," Empirical Software Engineering, vol. 25, no. 4, pp. 2997-3040, Jul. 2020,

doi: https://doi.org/10.1007/s10664-020-09827-6.

[19] A. Cañete, J.-M. Horcas, I. Ayala, and L. Fuentes, "Energy efficient adaptation engines for

android applications," Information and Software Technology, vol. 118, p. 106220, 2020,

doi: https://doi.org/10.1016/j.infsof.2019.106220.

[20] S. Chowdhury, S. Di Nardo, A. Hindle, and Z. M. Jiang, "An exploratory study on

assessing the energy impact of logging on Android applications," Empirical Software

Engineering, vol. 23, no. 3, pp. 1422-1456, Jun. 2018, doi: https://doi.org/10.1007/s10664-

017-9545-x.

[21] M. Couto, P. Borba, J. Cunha, J. P. Fernandes, R. Pereira, and J. Saraiva, "Products go

green: worst-case energy consumption in software product lines," in Proceedings of the

21st International Systems and Software Product Line Conference, vol. A, 2017, pp. 84–

93.

International Journal of Computer Science and Information Technology Research (IJCSITR) https://ijcsitr.com

16

[22] M. Couto, J. Cunha, J. P. Fernandes, R. Pereira, and J. Saraiva, "GreenDroid: A tool for

analysing power consumption in the android ecosystem," 2015 IEEE 13th International

Scientific Conference on Informatics, Poprad, Slovakia, 2015, pp. 73-78, doi:

https://doi.org/10.1109/Informatics.2015.7377811.

[23] I. Zahid, M. A. Ali, and R. Nassr, "Android smartphone: Battery saving service," 2011

International Conference on Research and Innovation in Information Systems, 2011, pp.

1-4.

[24] A. M. Muharum, V. T. Joyejob, V. Hurbungs, and Y. Beeharry, "Enersave API: Android-

based power-saving framework for mobile devices," Future Computing and Informatics

Journal, vol. 2, no. 1, pp. 48-64, 2017.

[25] A. Almasri and L. B. Gouveia, "Analyzing and Evaluating the Amount of Power

Consumption Used by Current Power-Saving-Applications on Android Smartphones,"

Internal Report TRS 04/2019. Technology, Networks and Society Group, 2019.

[26] N. Zaman and F. A. Almusalli, "Smartphones Power Consumption & Energy Saving

Techniques," in 2017 International Conference on Innovations in Electrical Engineering

and Computational Technologies (ICIEECT), 2017, pp. 1-7..

